MED 1208: Biochemical basis of cardiorespiratory functions, alimentation and nutrition Module - 2017/2018 Batch

Credits: 5 Responsible Department: Biochemistry Module Coordinator: Dr. B.L. Goonapienuwala

Торіс	Time	Objectives	T/L activity	Comments
1. Exchange and transport of respiratory gases				
1.1 Alveolar surfactant	1 hr	 Define surface tension and describe how it applies to lung mechanics, including the effects of alveolar size and the role of surfactants. Describe the principal components of pulmonary surfactant and explain the roles of each. Explain the biochemical basis of infant respiratory distress syndrome (IRDS), adult respiratory distress syndrome (ARDS) and chronic obstructive pulmonary diseases (COPD) based on the derangement of lung surfactant. List the common toxicants which affect function of surfactant 	Lecture (1hr)	
1.2 Transport of respiratory gases	7 hrs	 Describe the modes of O₂ transport in blood Draw and explain the O₂-haemoglobin dissociation curve List the factors affecting O₂-haemoglobin dissociation 	Lecture (2hrs) PD (3hrs) SGD (2hrs)	PD on respiratory gas transport SGD based on the lectures on

		curv	e		surfactant,
			ain how, temperature, pH, 2,3 DPG, variants of		respiratory gas
			noglobin and CO affect the affinity of hemoglobin		transport &
			₂ based on O ₂ -haemoglobin dissociation curve		haemoglobin
			cribe the modes of CO_2 transport in blood		nacinogiosin
			cribe the importance of the chloride shift in the		
			sport of CO_2 by blood		
			v the carbon dioxide dissociation curves for oxy-		
			deoxy-hemoglobin		
1.3 Acid base	5 hrs	1. Defi		Lecture (2hrs)	
balance		2. Desc	ribe the importance of acid-base regulation in an an body	PD (3hrs)	
		3. List	the important buffer systems of human body		
		4. Expl	ain the buffering actions of bicarbonate buffer		
		syste	em, phosphate buffer system, protein buffer		
		syste	em and ammonia buffer system		
		5. Defi	ne acidaemia, acidosis, alkalaemia and alkalosis		
		6. List	common causes for respiratory acidosis,		
		resp	iratory alkalosis, metabolic acidosis and		
		met	abolic alkalosis		
		7. State	e the methods of assessing acid-base status		
		8. Inte	rpret the arterial blood gas analysis report up to		
		the	evel of diagnosis of respiratory acidosis,		
		resp	iratory alkalosis, metabolic acidosis and		
		met	abolic alkalosis		
2. Blood and					
circulation					
2.1 Haemoglobin	1 hr		ribe the basic structure of haemoglobin	Lecture (1hr)	
		-	ain the importance of structure of haemoglobin		
		-	ts function		
			e the different physiological types of haemoglobin		
		and	their functional significance		
2.2. Haem	1 hr		ine the synthesis of haem and its regulation	Lecture (1hr)	Jaundice will be
metabolism and		2. Desc	ribe the process of haem catabolism		done in detail under

jaundice		3.	Define jaundice		Alimentation - Liver
		4.	Explain hyperbilirubinaemia and jaundice based on		
			haem metabolism		
2.3. Abnormal	5 hrs	1.	List the types of abnormal haemoglobin	Lecture (2hrs)	
haemoglobins		2.	Describe the structural abnormalities of haemoglobin	PD (3hrs)	
			S, hemoglobin C, methaemoglobin, alpha and beta		
			thalassemia		
		3.	Describe the molecular basis of hemoglobin S,		
			hemoglobin C, alpha and beta thalassemia		
		4.	Explain the functional defects of haemoglobin S,		
			hemoglobin C, methaemoglobin, alpha and beta		
			thalassemia		
2.4. Plasma	6 hrs		List important plasma proteins (including lipoproteins)	Lecture (3hrs)	PD on plasma
Proteins			Describe the functions of plasma proteins (overall)		proteins and
		3.	State the tissues involved in synthesis of plasma		electrophoresis
			proteins		
			Describe the role of serum albumin	PD (3hrs)	
		5.	Describe the basic steps in metabolism of		
			chylomicrons, VLDL, TAG, HDL and LDL		
		6.	Explain the basis of electrophoresis based on		
			separation of plasma proteins		
		7.	Apply the knowledge of electrophoresis in		
			classification of plasma proteins		
		8.	Describe the importance of assessing plasma proteins		
			in disease diagnosis		
2.5. Nutritional	2 hrs		Recall the basic steps of erythropoiesis	Lecture (2hrs)	
factors affecting			List the nutritional factors involved in erythropoiesis		
erythropoiesis		3.	Explain the role of iron, folate and vitamin B_{12} in		
(Iron, Folate and			erythropoiesis		
Vit B ₁₂		4.	Describe the consequences of iron, folate and vitamin		
metabolism)			B ₁₂ deficiency relating to erythropoiesis		
		5.	Recall common causes for iron, folate and vitamin B ₁₂		
			deficiencies		
		6.	Interpret the investigations of iron, folate and vitamin		

			B_{12} deficiencies (red cell morphology, serum iron,		
			ferritin, transferrin, TIBC, transferrin saturation,		
			serum vitamin B_{12} , serum folate, intrinsic factor etc.)		
2.6. Red cell	2 hrs		Recall the functions of erythrocytes	Lecture (2hrs)	
metabolism &		2.	Describe the metabolic adaptations of erythrocytes		
red			(glycolysis, HMP shunt, production of 2,3-BPG)		
cell structure		3.	Explain the importance of above metabolic		
			adaptations for the functions of erythrocytes		
		4.	Explain the importance of NADPH for erythrocytes		
		5.	State the common enzyme defects of erythrocytes		
			metabolism (pyruvate kinase deficiency and glucose		
			6-phosphate dehydrogenase deficiency)		
		6.	Describe the consequences of glucose 6-phosphate		
			dehydrogenase deficiency		
		7.	Describe the structure of erythrocyte membrane and		
			cytoskeleton		
		8.	State the diseases associated with alterations of		
			erythrocyte membrane and cytoskeleton		
		9.	Describe the basis of hereditary spherocytosis,		
			hereditary elliptocytosis and hereditary ovalocytosis		
			based on the genetic defects of proteins associated		
			with erythrocyte membrane		
2.7. Haemolytic	1 hr	1.	Define hemolytic anemia	Lecture (1hr)	
anaemia		2.	Outline the causes of hemolytic anemia		
			(intracorpuscular and extracorpuscular)		
		3.	Explain the mechanisms of haemolysis based on		
			above causes		
		4.	Describe the fate of hemoglobin in excessive		
			intravascular haemolysis (haemoglobinaemia,		
			haemoglobinuria, jaundice etc)		
		5.	Describe the general features of hemolytic anemia		
			based on the excessive haemolysis and abnormal		
			bilirubin metabolism (pallor, reduced haemoglobin,		
			reticulocytosis, enlargement of spleen, increased		

			MCV, elevated lactate dehydrogenase, etc.)	
2.8. Role of the	2 hrs	1.	State the functions of vascular endothelium	Lecture (2hrs)
vascular		2.	List vasodilators and vasoconstrictors produced by	
endothelium in			endothelial cells	
regulation of		3.	State how NO is synthesized and describe the	
blood			regulation	
pressure/blood		4.	State the role of NO, prostacyclins, endothelins etc.	
flow		5.	Outline the role of vascular endothelium in relations	
			to rennin-angiotensin-aldosterone system in	
			maintaining blood pressure	
		6.	Explain the rationale for the use of ACE inhibitors in	
			the regulation of blood pressure	
3. Muscle and				
exercise				
3.1. Biochemical	5 hrs	1.	Define oxygen debt	Lecture (2hrs)
Effects of		2.	Describe the metabolic pathways in relation to the	
exercise on			intensity of exercise	PD (3hrs)
muscle and other		3.	Describe the changes in the muscle following muscle	
tissues			fatigue after exercise and lactic acidosis	
		4.	Describe the biochemical basis of the recovery of	
			skeletal muscle after exercise	
		5.	Describe energy cost of exercise in terms of BMR	
		6.	State the receptor changes in exercise (LDL, insulin	
			etc) and their impact	
			Explain the changes in blood lipid profile with exercise	
3.2. identification	5 hrs	1.	Define "biomarker"	Lecture (2hrs)
of muscle		2.	Describe the features of a good biomarker	
damage		3.	List the biomarkers that are useful in identifying	PD (3hrs)
			skeletal and cardiac muscle damage	
		4.	Explain how skeletal muscle damage could be	
			differentiated from cardiac muscle damage based on	
			change of serum parameters	
		5.	State the alteration in activity of the enzymes in	
			serum following skeletal muscle damage	

		C Define the term (as relative size)		
		6. Define the term 'myoglobinuria'		
		7. State the effects of myoglobin on nephrons		
		8. Outline the basis for selection of biomarkers used in		
		the identification of muscle damage		
		9. List the enzymes used in diagnosis of myocardial		
		damage		
		10. Describe the place of troponin, LDH, CK levels in		
		relation to diagnosis of myocardial damage		
		11. Describe how myoglobinuria is detected in urine		
4. Digestion and				
absorption				
4.1. Liver and bile	11 hrs	1. Describe the functions of the liver		
		2. State the constituents of exocrine secretion and its		
		importance		
		3. Explain the metabolic functions of the liver		
		(Carbohydrate metabolism, synthesis and secretion of	Lecture (2hrs)	
		proteins, lipid metabolism, cholesterol catabolism,		
		haem metabolism)		
		4. State the constituents of bile and its importance	PD (2x3hrs)	PD 1 on objectives 4,
		5. Describe the factors that promote the formation of		8&9
		gall stones		
		6. State the composition of different types of gall stones	SGD (2hrs)	PD 2 on objectives
		commonly found		10 – 14
		7. Describe the role of liver in metabolism of xenobiotics		
		8. State the liver enzymes and other plasma parameters		SGD on all
		(plasma proteins) useful in diagnosis of liver		objectives
		dysfunction		
		9. Correlate the degree of cell damage with change in		
		the serum enzyme levels and plasma proteins		
		10. Describe the types of jaundice	-	
4.2. Jaundice		11. Differentiate pre-hepatic, hepatic and post-hepatic		
		jaundice based on etiology	Lecture (1hr)	
		12. Explain the biochemical changes that occur in each		
		type		
	1			

4.3. Digestion & absorption of carbohydrates	8 hrs	 Describe the biochemical basis of clinical features and laboratory investigations of jaundice Interpret the laboratory investigations of jaundice State the constituents that are important in the digestion of carbohydrate in saliva, pancreatic juice and brush border Explain carbohydrate digestion in the GI tract State the products of carbohydrate digestion and explain their absorption. 	Lecture (1hr)	Lecture 1 from objectives 1 – 3
4.4. Digestion & absorption of proteins		 Name the important constituents of GI and pancreatic secretions involved in protein digestions and explain their functions in protein digestion Explain the importance of secreting proteolytic enzymes in their pro-forms and explain how the gut wall is protected from the activated proteolytic enzymes Outline the process of protein digestion State the products of protein digestion and explain how they enter the absorptive cell 	Lecture (1hr)	Lecture 2 from objectives 4 – 7
4.5. Digestion and absorption of lipids		 Recall the constituents of bile and explain their role in lipid digestion Explain the importance of emulsification process and micelle formation in the digestion process of lipids Name the enzymes involved in lipid digestion and explain their functions Describe the absorption of digestive products of lipids (including fat soluble vitamins) Explain the chylomicron formation in the enterocyte Describe the enterohepatic circulation and its importance in fat digestion 	Lecture (1hr) PD (3hrs) SGD (2 hrs)	Lecture 3 from objectives 8 – 13 PD from objectives 1,2,6,9 and 10

		14. State the changes that occur in the large intestine		
		with respect to Fiber, Vitamin B_{12} and Vitamin K		
4.6. Digestive disorders	4 hrs	 Explain how the following conditions affect digestion and absorption 	Lecture (2hrs)	DD on chiestive No.
		 Digestive disorders Achlorhydria 	PD (2hrs)	PD on objective No.
				4
		 Biliary insufficiency Lactose intolerance 		
		 Pancreatic exocrine insufficiency 		
		 Coeliac disease 		
		 Chronic diarrhoea 		
		 Chronic alcoholism 		
		Nutritional deficiencies		
		 Protein energy deficiency 		
		 Folate and B12 deficiency 		
		2. Explain the mechanism of Cholera		
		3. State the alteration of the compositions that can		
		occur in blood, urine and faeces due to the disorders		
		stated in 1		
		4. Correlate the clinical features of the conditions		
		mentioned in no 1 with their biochemical		
		derangements		
		5. State the biochemical tests that can be performed to		
		assess the disorders stated in 1		
5. Nutritional Biochemistry – 2				
5.1. Healthy diet	1 hr	1. State what is healthy diet	Lecture (1hr)	
		2. State what is "MyPlate"		
		3. State the characteristic features of healthy diet and		
		MyPlate		
		Describe Sri Lankan "healthy plate"		

5.2. Components	10 hrs	1.	Explain the importance, state the types and their		
of diet and food			products, describe the nutritional value, antinutrient		
processing			properties, processing methods and their effects on		
			the nutritional value of the following in diet.		
			a. cereals	Lecture (1hr)	
			b. pulses	Lecture (1hr)	
			c. vegetable, fruits and starchy foods	Lecture (1hr)	
			d. oil seeds and nuts including coconut	Lecture (1hr)	
			e. meat, fish and egg	Lecture (1hr)	
			f. milk and milk products	Lecture (1hr)	
		2.	Describe the nutritive value and the importance of colostrum and breast milk	Lecture (1hr)	
		2	Describe the methods used to minimize losses of		DD on objective No
		5.		PD (3hrs)	PD on objective No
			nutrients during processing and increase the bio- availability of nutrients		3
5.3. Dietary fibre	1 hr	1	Define the term dietary fibre	Lecture (1hr)	
5.5. Dietary libre	T 111		State the types of dietary fibre	Lecture (IIII)	
			State the food items rich in dietary fibre		
			Discuss the health benefits of dietary fibre		
5.4. Energy	6 hrs		Recall why energy is needed for the body		
requirement	01113		Recall the sources of dietary energy		
requirement			Define Resting Energy Expenditure (REE), Basal		
		Э.	Metabolic Rate (BMR) and Specific Dynamic Action	Lecture (2hrs)	
			(SDA)		SGD on both energy
		4	State factors influencing BMR		and protein
			Compare and contrast BMR and the total energy		requirements
		5.	requirement		requirements
		6.	Calculate total energy expenditure using BMR and		
			BMR factor		
		7.	Explain the FAO/WHO/UNU recommended intakes of		
			energy in the various phases of life (newborn, infants,		
			children and adolescents, adults and elderly,		
			pregnancy, lactation)		

5.5. Protein		1.	Explain why protein is essential in the diet	SGD (2hrs)
requirement		2.	Explain what is nitrogen balance (zero, positive and	
			negative)	
		3.	State the parameters for evaluating quality of	
			proteins; Biological Value (BV), Net Protein Utilization	
			(NPU), digestibility and amino acid score, protein	
			digestibility corrected amino acid score (PDCAAS) etc.	
		4.	Define and compare Biological Value (BV), Net Protein	
			Utilization (NPU), digestibility and amino acid score	
			and protein digestibility corrected amino acid score	
			(PDCAAS)	
		5.	Compare the quality of protein sources commonly used in Sri Lanka	Lecture (2hrs)
		6.	Discuss the FAO/WHO/UNU recommended intakes of	
			proteins in the various phases of life (newborn,	
			infants, children and adolescents, adults and elderly,	
			pregnancy, lactation)	
5.6. Protein	1 hr	1.	Define wasting and stunting	Lecture (1hr)
energy		2.	Explain kwashiorkor and marasmus	
deficiencies		3.	Explain the use of growth parameters on identifying	
			wasting and stunting	
		4.	Identify laboratory and clinical features associated	
			with malnutrition including kwashiorkor, marasmus,	
			wasting and stunting	
5.7. Free radicals	6 hrs		State what are free radicals and antioxidants	Lecture (2hrs)
& antioxidants			State the types of free radicals	
		3.	State the sources of free radicals (exogenous and	
			endogenous)	
			State the harmful effects of free radicals	
		5.	Explain the antioxidant systems in the body	
			(enzymatic / non enzymatic and dietary)	
		6.	Explain the relationship of oxidative stress in ageing	
			and human diseases; atherosclerosis, diabetes,	
			haemolysis, neurodegenerative disorders, cancer etc	

5.8. Biochemical effects of		1.	Describe the metabolism of alcohol in chronic alcoholism	Lecture (2hrs)	
alcoholism		2.	Describe the effects of alcohol on metabolism		
		3.	State the possible organ failures in chronic alcoholism	SGD (2hrs)	
		4.	Explain the consequences of chronic alcoholism	566 (21113)	
			(chronic pancreatitis, fatty liver, liver cirrhosis)		
		5.	Explain the nutritional problems arising in chronic alcoholism (iron, vitamin B and protein)		
		6.	Outline the management of nutritional deficiencies in chronic alcoholism		
5.9. Dietary	1 hr	1.	List the common diseases requiring special dietary	Lecture (1hr)	
management in			management (acute and chronic renal failures,		
diseases			chronic liver failure, dyslipidemia, diabetes, chronic		
			alcoholism, hepatitis, pancreatic insufficiencies, malabsorption etc.)		
		2.	Explain the biochemical basis of dietary management		
			of above diseases		
6. Student	3 hrs	Presen	t and discuss the key areas that were learnt during the	Student	Holistic approach on
centered learning		modul	e	presentations	the module.
activity				(3 hrs)	Revision of major
					topics by presentation
					and discussion to
					improve the student- centered learning.
					centereu learning.

Lectures – 50 hours

SGD – 10 hours

Practical – 32 hours

Seminar – 3 hours